
WHITEPAPER

Revolutionizing healthcare:
Discover how Shift-right testing
ensures quality and real-time solutions

Abstract
Traditional testing methods often fall short in addressing key challenges,
such as ensuring service availability, maintaining responsiveness, and
achieving regulatory compliance, leading to potential risks in patient care
and data security. Shift-right testing offers a robust solution by focusing
on testing in live production environments post-deployment. This approach
enables continuous monitoring, real-time feedback, and
real-world validation to ensure optimal performance.
In healthcare, shift-right testing is critical for
detecting issues such as network congestion or
database bottlenecks, which can significantly
impact patient care. This paper delves into the
transformative impact of shift-right testing,
offering insights on how organizations can
embrace this approach to deliver adaptive
and resilient solutions that support critical
healthcare operations, improving patient
outcomes and user experience.

Sandeep Singh
Sr. Tech Specialist, Performance
QA Architect, CitiusTech

Jeevan Jadhav
Sr. Tech Specialist, Performance
Testing Practice Lead, CitiusTech

Content

1. Abstract

4. Importance of shift-right testing for healthcare solutions	

2. Introduction

5. Key techniques for implementing shift-right testing	

6. Impact of shift-right testing in modern healthcare technologies

3. Shift-right testing and Shift-left testing – understand the differences

5.1 Production application monitoring and feedback loop

5.2 A/B testing

5.3 Canary releases

5.4 Real user monitoring (RUM)

5.5 Feature toggles (aka feature flags)

6.1 Cloud infrastructure and DevOps	

6.2 Anomaly detection and predictive analysis	

6.3 App Security

7.1 Scenario 1: Continuous performance monitoring in telemedicine platforms

7.2 Scenario 2: Detecting security threats in a healthcare data system

7.3 Scenario 3: Improving user experience in hospital mobile apps

7.4 Scenario 4: Hospital management system (HMS)

7. Real-world scenarios of shift-right testing in healthcare	

8. Key challenges & mitigation

9. Conclusion

1

3

4

5

6

6

7

8

8

9

10

10

11

12

13

13

13

13

13

14

15

3

Introduction

“Test smarter, not harder.
Bringing the power of proactive
quality assurance to production.”

In today’s fast-paced world, the demand for high-
quality, secure, and efficient software has never
been greater. This is especially true in industries like
healthcare, where software solutions directly impact
patient outcomes, regulatory compliance, and overall
service delivery. One of the most effective approaches
to achieving these high standards is
shift-right testing.

In traditional software testing (often referred to as shift-left testing), most tests are
conducted early in the development lifecycle—during the coding and unit testing phases.
However, shift-right testing flips this approach by performing tests after deployment, in
live environments. This practice involves:

	� Continuous monitoring: Observing how the software performs in real time after it
goes live, by gathering data on user behaviors, system health, and performance
metrics.

	� Real-time feedback: Using telemetry and real-world data to identify performance
issues, security vulnerabilities, and other potential bugs that may have been missed
during pre-deployment tests.

	� Automated and manual testing post-deployment: Implementing automated tests
for constant verification and manual tests for complex user interactions post-
deployment.

Shift-right testing ensures that the application performs as expected under real user
conditions, considering variables that can’t be replicated in a development or staging
environment.

4

Shift-right testing and Shift-left testing – understand the differences

Shift-left testing Shift-right testing

As
pe

ct

Timing

Focus

Test
environment

Goal

Feedback
type

Shift-right testing and Shift-left testing are two approaches that define when and
how software testing is performed during the software development lifecycle (SDLC).
While both are integral to modern software delivery, particularly in agile and DevOps
environments, they differ in their timing, focus, and objectives. Here are the major key
differences between shift-right testing and shift-left testing.

Performed early in the SDLC
(during development and
design)

Preventive testing (unit tests,
integration tests, etc.)

Controlled, static test
environments

Prevent defects early and
improve code quality

Early detection and feedback
from developers and tools

Performed after deployment, in
production or near-production
environments

Real-world monitoring and
testing (load, performance,
security, user behavior)

Real or production-like
environments

Detect and resolve issues
in production, ensuring
real-world readiness

Continuous feedback from
live users and system
performance data

Table 1: Key differences between the shift-left and shift-right testing approaches

5

Importance of shift-right testing for healthcare solutions

Healthcare and life sciences solutions directly impact patient safety, treatment efficacy,
and regulatory compliance. A minor software failure can result in significant disruptions in
patient care, privacy violations, and even legal consequences. Shift-right testing can help
mitigate these risks by ensuring continuous monitoring under real-world conditions and
fixing the issues quickly when identified. Some key benefits for healthcare include:

	� Real-time monitoring of patient data systems: Healthcare applications, such as
electronic health records (EHRs) or patient management systems, rely on massive
amounts of data to function effectively. Shift-right testing allows for constant
monitoring of these systems, ensuring their optimal performance, even under heavy
loads. It also provides immediate feedback when issues arise.

	� Proactive security measures: Security is paramount in healthcare due to the
sensitivity of patient data. With shift-right testing, healthcare organizations can
continuously monitor for potential security vulnerabilities and breaches, significantly
minimizing the risk of data leaks or cyberattacks.

	� Improved user experience: Both clinicians and patients prefer healthcare applications
with engaging user experience. Shift-right testing allows developers to track user
interactions post-deployment and make iterative improvements, ensuring that
applications remain intuitive and efficient in real-world usage.

Figure 1: ROI with shift-right testing

6

Key techniques for implementing shift-right testing

The Feedbak
Loop

Figure 2: Production application monitoring and feedback loop strategy

Shift-right testing can be implemented in various ways and here are some key techniques to
embrace this approach:

1.	 Production application monitoring and feedback loop: This offers essential practices
for ensuring post-release performance. By continuously tracking performance and user
behavior in the live environment, teams can quickly detect issues, improve the product,
and respond to user needs. The process is as below:

	� Set up monitoring tools: Use platforms like Datadog, New Relic, or Prometheus
to track key performance metrics such as error rates, response times, and uptime.
Include logging and tracing for deeper insights.

	� Gather user feedback: Collect user feedback through in-app surveys or tools like
Qualaroo and Zendesk to understand their experiences and issues.

	� Track key metrics: Monitor performance metrics like load times, error rates, and user
engagement with tools like Google Analytics, Mixpanel, or Heatmaps.

	� Identify issues and anomalies: Look for performance drops or unusual user behavior
and use real-time alerts from monitoring tools to quickly detect issues.

	� Analyze data and act on insights: Use data from monitoring and user feedback to
prioritize fixes, optimizations, and UI improvements.

Collect app
& customer
feedback

AnalyzeReview &
iterate

Implement

7

2.	 A/B testing: This involves comparing two or more variants of a feature, design, or
system by exposing them to different sets of real users to determine which performs
better in terms of user engagement, performance, or satisfaction. This can be
implemented by following the steps below.

	� Select test variables: Choose the specific features, design changes, or performance
aspects to test (e.g., new UI layout, A/B variants of a button color).

	� Segment users: Divide your users into distinct groups to ensure each group is
exposed to different variants.

	� Track key metrics: Use tools like Google Analytics, Optimizely, or VWO to measure
user interaction, conversion rates, and engagement.

	� Analyze results: Evaluate the performance of each variant based on key metrics and
user feedback to determine the winning version.

	� Iterate based on insights: Once a variant proves successful, implement it widely
while continuing to test new changes.

A/B Test

17%

24%

Figure 3: A/B testing strategy

8

3.	 Canary releases: This includes deploying a new feature or version of software to a
small group of users (the “canary” group) to validate its stability before rolling it out to
the entire user base. Below is the process:

	� Select a subset of users: Begin by releasing the update to a small portion of your
user base (usually <10%).

	� Monitor user feedback and metrics: Use telemetry tools like New Relic, Datadog, or
Prometheus to monitor user behavior, error rates, and system performance for the
canary group.

	� Gradually scale: If the canary release performs well, increase its exposure
progressively to a larger portion of the user base.

	� Roll back if needed: If issues are identified, quickly roll back the release for the
canary group and fix them before wider deployment.

4.	 Real user monitoring (RUM): It tracks how real users interact with your application in a
live environment. It provides detailed insights into performance, user experience, and
potential issues directly from the end users’ perspective. The strategy is as below:

	� Implement RUM tools: Use RUM tools like New Relic, Dynatrace, or Google Analytics
to collect data on users’ interactions with your application.

	� Track key metrics: Monitor page load times, session durations, click patterns, and
error rates to gain insight into how real users experience your app.

	� Analyze and optimize: Use the data to identify performance bottlenecks, user
behavior patterns, and areas for improvement.

	� Prioritize user impact: Focus on resolving the issues that affect the largest
segments of users to enhance overall experience.

Figure 4: Canary release strategy

Users

90% of Request
Traffic

10% of Request
Traffic

Canary Release

Old Version (V 1.0)

New Version (V 1.1)

9

Figure 5: Real user monitoring (RUM) strategy

Figure 6: Feature toggles (or feature flags) strategy

How does RUM work

New feature

Feature Flags Customers

5.	 Feature toggles (aka feature flags): These allow developers to control the availability
of new features without deploying new code. This method enables dynamic enabling/
disabling of features for specific users or conditions in real-time. This approach can be
followed as below:

	� Integrate feature flags: Use feature flag management tools like LaunchDarkly,
Optimizely, or Unleash to integrate flags into your codebase.

	� Define flag criteria: Set criteria for when features should be enabled, such as user
demographics, geographical location, or time of day.

	� Monitor and adjust: Monitor the impact of features through analytics and adjust the
flag status based on performance or user feedback.

	� Roll out gradually: Start with a small group of users, and gradually expand
availability as you confirm stability.

10

Impact of shift-right testing in modern healthcare technologies

Cloud infrastructure and DevOps

Cloud infrastructure and DevOps practices are becoming the backbone of modern
software development and deployment. In these environments, shift-right testing plays
a crucial role in ensuring continuous quality, scalability, and security. Let’s explore the
impact of shift-right testing in these areas:

1.	 Continuous monitoring in cloud environments: cloud platforms like AWS, Azure,
and Google Cloud provide dynamic and scalable environments that can change
rapidly. Software deployed in these environments can be subjected to various
load conditions, security challenges, and performance issues that are difficult to
replicate in a testing environment. By leveraging cloud-native tools and monitoring
services (e.g., AWS CloudWatch, Azure Monitor), shift-right testing allows continuous
performance and availability monitoring of cloud-based applications. Issues such
as scaling failures, network latency, or resource contention can be detected and
addressed in real-time, without waiting for traditional testing cycles.

2.	 DevOps integration automating testing and feedback loops: DevOps emphasizes
collaboration between development and operations teams to improve the speed
and quality of software delivery. In a DevOps pipeline, shift-right testing can play an
integral part; it provides continuous feedback from the live environment. Strategies
like Chaos engineering (e.g., Netflix’s Chaos Monkey), canary deployments, and
feature flags enable testing in production with controlled user subsets. This allows
teams to test new features or changes in a safe, real-world scenario, ensuring they
don’t disrupt the entire system.

Figure 7: DevOps cycle representation

11

Anomaly detection and predictive analysis

Anomaly detection and predictive analysis, when integrated with shift-right testing,
significantly enhance system reliability and performance in live environments. Anomaly
detection identifies unusual system behavior, such as spikes in errors or slow response
times, allowing teams to address issues early and prevent them from impacting users,
which is especially crucial in high-demand environments. Predictive analysis, on the
other hand, uses historical data to forecast potential problems like resource limitations or
traffic spikes, enabling teams to take preventive actions and ensure smoother operations.
When combined with the shift-right approach, these techniques provide real-time insights
into system health, helping teams identify bottlenecks, improve efficiency, and optimize
resources. This proactive approach reduces downtime, improves user experience, and
minimizes operational costs, ultimately ensuring high system performance and reliable
service delivery.

12

Security is a critical concern in healthcare software, especially with the rise of data
breaches and cyberattacks. Traditional security testing may not always uncover
vulnerabilities that could be exploited in a live environment. Shift-right testing addresses
this gap by allowing continuous monitoring for new security threats after deployment.

App Security

Shift-right security testing helps organizations:

1.	 Identify vulnerabilities in real-time: Continuous security monitoring can detect
unusual activity, such as unauthorized access attempts or suspicious data transfers.

2.	 Apply automated security patches: When vulnerabilities are discovered, patches
can be applied quickly, ensuring the system remains secure without requiring
extensive downtime.

3.	 Ensure compliance with regulations: Monitoring systems for any compliance
violations or potential risks can help maintain ongoing adherence to regulations.

13

Real-world scenarios of shift-right testing in healthcare

Let’s explore a few real-world scenarios to understand the impact of shift-right testing.

Scenario 1: Continuous performance monitoring in telemedicine platforms

A telemedicine platform enables virtual consultations between patients and doctors. In a
traditional shift-left testing approach, the application may pass performance tests before
deployment but fail under real-world conditions when thousands of patients try to access
the system simultaneously. With shift-right testing, continuous monitoring of user activity
and system performance can identify bottlenecks and slow response times instantly.
Based on this feedback, performance improvements can be deployed quickly, ensuring the
platform remains responsive during high-demand periods (e.g., during a healthcare crisis).

Scenario 2: Detecting security threats in a healthcare data system

A healthcare provider uses a cloud-based data storage system to store patient records
and other sensitive information. After deployment, shift-right testing is implemented
to continuously monitor for security threats like unusual login attempts, suspicious IP
addresses, or unauthorized data access. When a potential security breach is detected, the
system automatically alerts the IT team and takes corrective actions, such as blocking
suspicious activities or initiating a security patch.

Scenario 3: Improving user experience in hospital mobile apps

A hospital launches a mobile app for patients to book appointments, receive test results,
and communicate with healthcare providers. Post-launch, shift-right testing allows
the development team to track how users interact with the app. Feedback from real-
world users helps identify areas where the user interface (UI) can be improved, such as
simplifying appointment scheduling or improving notification systems. These insights
allow the team to make quick iterations and improve the user experience, leading to higher
patient satisfaction.

Scenario 4: Hospital management system (HMS)

A HMS integrates features such as scheduling, patient records, and billing. Before
deployment, traditional load testing simulates heavy traffic to gauge how the system
would handle peak usage. However, once the system is live and being used by thousands
of healthcare professionals, issues like network congestion, database bottlenecks, or
unforeseen hardware configurations may arise. Healthcare organizations can maintain
a high level of service availability and responsiveness, even under heavy usage by
leveraging shift-right testing. This helps improve both the user experience for healthcare
professionals and the quality of patient care delivered. This feedback loop ensures that
the system remains robust and reliable as it scales to meet the demands of a dynamic
healthcare environment.

14

Key challenges & mitigation

Shift-right testing, while offering several benefits, also presents a set of challenges. These
challenges arise from performing testing activities after the software is in production,
where real users interact with the system under real-world conditions. Here are some of
the key challenges and best practices to mitigate them.

Figure 8: Key challenges & mitigation

15

Conclusion

Shift-right testing is revolutionizing how software quality, performance, and security
are maintained in live production environments, particularly in high-stakes industries
like healthcare. By continuously monitoring applications after deployment, healthcare
organizations can ensure their solutions remain secure, efficient, and user-friendly. This
approach helps maintain ongoing compliance by monitoring systems for any violations or
potential risks. Real-time testing and feedback loops allow teams to identify and address
issues before they impact patient care, security, or regulatory compliance.

The healthcare industry’s shift-right testing approach is not just about identifying
problems, it is also evolving software post-deployment, ensuring that solutions are
adaptive, resilient, and capable of supporting critical healthcare operations. With its focus
on continuous improvement and real-time monitoring, shift-right testing is a key enabler
for delivering high-quality, secure, and patient-centric healthcare solutions.

CitiusTech is a global IT services, consulting, and business solutions enterprise
100% focused on the healthcare and life sciences industry. We enable 140+
enterprises to build a human-first ecosystem that is efficient, effective, and
equitable with deep domain expertise and next-gen technology.

With over 8,500 healthcare technology professionals worldwide, CitiusTech
powers healthcare digital innovation, business transformation and industry-wide
convergence through next-generation technologies, solutions, and products.

www.citiustech.com

Shaping
Healthcare
Possibilities

Co
py

rig
ht

 ©
 2

02
5

Ci
tiu

sT
ec

h.
 A

ll
Ri

gh
ts

 R
es

er
ve

d.

https://www.citiustech.com/?utm_source=Collaterals&utm_medium=Collaterals&utm_id=ShapingHealthcarePossibilities

